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Inthispaper,weapplyArtificialNeuralNetwork(ANN)trainedwithParticleSwarmOptimization(PSO) 

fortheproblemofchannelequalization.ExistingapplicationsofPSOtoArtificialNeuralNetworks(ANN) 

training have only been used to find optimal weights of the network. Novelty in this paper is that it also 

takescareofappropriatenetworktopologyandtransferfunctionsoftheneuron.ThePSOalgorithmopti- 

mizesallthevariables,andhencenetworkweightsandnetworkparameters.Hence,thispapermakesuse 

ofPSOtooptimizethenumberoflayers,inputandhiddenneurons,thetypeoftransferfunctionsetc.This 

paperfocusesonoptimizingtheweights,transferfunction,andtopologyofanANNconstructedforchan-nel 

equalization. Extensive simulations presented in this paper shows that, as compared to other ANN 

based equalizers as well as Neuro-fuzzy equalizers, the proposed equalizer performs better in all noise 

conditions. 

 

1. Introduction 

 
Adaptive channel equalizers play an important role in recover- ing 

digital information from digital communication channels. In 

Voulgaris and Hadjicostis (2004), the authors have proposed opti- 

mal preprocessing strategies for perfect reconstruction of binary 

signals from a dispersive communication channels. Touri et al.have 

developed (Touri, Voulgaris, &Hadjicostis, 2006) determinis- tic 

worst case frame work for perfect reconstruction of discrete  data 

transmission through a dispersive communication channel. Few 

adaptive equalizers have been suggested using soft computing 

tools such as ANN, PPN and the FLANN in late 90 s. It has beenre- 

ported that these methods are best suited for nonlinear and com- 

plex channels. Chebyshev Artificial Neural Network has also been 

proposed for nonlinear channel equalization (Patra, Poh, Chaudha-

ri, & Das, 2005). The drawback of these methods is that the esti-

mated weights may likely fall to local minima during training. 

Joint-processing adaptive nonlinear equalizer based on a pipelined 

recurrent neural network (JPRNN) using a modified real-time 

recurrent learning (RTRL) algorithm is proposed in Zhao et 

al.(2011a). Adaptive decision feedback equalizer (DFE) with the 

combination of finite impulse response (FIR) filter and functional 

link neural network (CFFLNNDFE) is introduced in Zhao et 

al.(2011b).Inbothofthesepapersitisshownthatimprovementin 
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performance is in expense of increased complexity. To overcome 

this complexity, Zhao et al. (2011c), Zhao and Zhang (2009), 

Zhao,Zeng, He, Jin and Li (2012), Zhao, Zeng and Zhang (2010a), 

Zhao,Zeng, Zhang and Li (2010b) proposed some of typical forms 

of ANN based equalizers. 

Despite of complexity problems, ANN remains as one of 

besttools for the problem of equalization (Abiyev, Okyay, Tayseer, 

&Fakhreddin, 2011; Panigrahi, Santanu, &Sasmita, 2008a; Zhao 

&Zhang, 2009; Zhao et al., 2010a; Zhao et al.,  2010b;  Zhao et 

al.,2012; Zhao et al., 2011a, 2011b, 2011c). However, because tradi-

tional training algorithms fail in many cases, there is a recent 

trendto train ANN with bio-inspired optimization algorithms for 

differ-ent applications (Chau, 2006; Yogi, Subhashini&Satapathy, 

2010). PSO has been an increasingly applied in the area of 

computationalintelligence. Also, it lends itself as being applicable 

to a variety ofoptimization problems. Evolutionary algorithms are 

also successfulin the training of Artificial Neural Networks (ANN) 

Yogi et al.(2010), Lee and Lee (2012), Lin and Liu (2009), Lin and 

Chen(2011), Hong (2008), Potter, Venayagamoorthy, and Kosbar 

(2010).Interestingly, applications of PSO to ANN training in 

theseworks have only been used to find optimal weights of a given 

net-work. But, there is also a need for the appropriate topology 

andtransfer functions of the neuron. The PSO algorithm optimizes 

allthe variables, and hence capable of optimizing network 

weightsand network parameters (may be variables). As a result, we 

canmake use of PSO to optimize all parameters of a network, i.e. 

thenumber of layers, input and hidden neurons, the type of transfer 
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functions etc. Hence, this paper focuses on optimizing the weights, 

transfer function, and topology of an ANN constructed for channel 

equalization. 

Recurrent Neural Networks (RNN) used in Potter et al. (2010)for 

channel prediction using hybrid and variants of PSO uses only for 

weight optimization. Moreover, here complexity becomes very high 

because of use of so many optimization algorithms and be- comes 

dead slow because of use of Differential Evolution (DE). However, 

the advancement made in this paper over existing work can be seen 

as optimizing the weights, transfer function, and topol- ogy of an 

ANN based channelequalizer. 

Though grammatical swarm optimization (de Mingo 

López,Blas, &Arteta, 2012) can be used to obtain a neural network 

topol- ogy, topology of ANN model used in this paper is decided 

using training algorithm discussed in later sections in this paper. 

The real essence of the proposed equalizer is its performance that 

outper- forms contemporary ANN (Zhao et al., 2011a, 2011b, 2011c) 

based and Neuro-fuzzy (Abiyev et al., 2011; Panigrahi et al., 2008a) 

equalizers available in the literature. 

The organization of the paper is as follows: Section 2 discusses 

the problem statement followed by the proposed system model in 

Section 3. For performance evaluation, the simulation study is car- 

ried out which is dealt in Section 4. Finally conclusion of the paper 

is outlined in Section 5. 

 
2. Problemstatement 

 
A model of digital transmission system is depicted in Fig. 1. 
Impulse response of channel & co-channel can be represented  

as (Panigrahi, Santanu, &Sasmita,2008b) 

pi—1 

HiðzÞ ¼ai;jz
—06i6n ð1Þ 

j¼0 

Here piand ai,jare length and tap weights of ith channel impulse re- 

sponse. We assume a binary communication system, which 

wouldmaketheanalysissimple,thoughitcanbeextendedtoanycommu

- nication system in general. The transmitted symbols xi(n), 0 6 i 6 

n for channel and co-channel are drawn from a set of independent, 

identically distributed (i.i.d) dataset comprising of {±1} and these 

are mutually independent. This satisfies thecondition 

E½xiðnÞ]¼0 ð2Þ 

E½xiðn1Þxjðn2Þ]¼dði—jÞdðn1—n2Þ ð3Þ 

whereE[·] represents the expectation operator and 
. 

1 n ¼ 0 

E g2   n   r2  and uncorrelated with data. The desired and interfer- 

ing signal can be representedas 

p0 —1 

dðnÞ ¼a0;jx0ðn—jÞ ð6Þ 
j¼0 

 
n pi —1 

dcoðkÞ ¼ ai;jxiðn—jÞ ð7Þ 
i¼1 j¼0 

The task of the equalizer is to estimate the transmitted sequence 

x0(n   k)    based    on    channel    observation    vector,    y(n)=   

[y(n), y(n     1), ..., y(n     m + 1)]T, where m is order of equalizer and   

k is decisiondelay. 

The error e(n) can be expressed as: 

eðnÞ ¼dðnÞ —yðnÞ ð8Þ 

Since e2(n) is always positive and represents the instantaneous 

power of the difference signal, chosen as cost function instead of 

e(n). The objective of an adaptive algorithm is to change the equal- 

izer weights iteratively so that e2(n) is minimized iteratively and 

subsequently reduced to zero. 

 
3. System model 

 
System model for the proposed equalizer in this paper is a multi 

layer ANN, where the network is trained for optimized value with 

use of PSO. System model for the proposed equalizer consists of an 

ANN where all its neurons trained with PSO. Technical advantages 

of the paper are evidenced from its novelty and performance 

results. 

PSO has been an increasingly applied in the area of computa- 

tional intelligence. Also, it lends itself as being applicable to a vari- 

ety of optimization problems. PSO is also successful in the training 

of Artificial Neural Networks (ANN). 

This section first provides a brief idea on PSO and ANN for the 

ease of the reader in following two subsections. Then, the PSO 

model of Ribeiro and Schlansker (2004) as proposed for channel 

equalization discussed in next subsection. 

 
 Artificial NeuralNetworks 

 
Artificial Neural Networks (ANN), are artificial models of the 

humanbrain.Humanbrainiscapableofadaptingtochangingsit- 

uations and learns quickly in the correct context. ANN works on 

simulation of the human brain. At their basic level ANN consist 

of an interconnected network of neurons andsynapses. 
dðnÞ¼ 

0 n–0 
ð4Þ Neurons are the fundamental element of an ANN. Neurons ac- 

cepts inputs from other neurons and produce an output by firing 

The channel output scalars can be represented as 

yðnÞ ¼dðnÞ þdcoðnÞ þgðnÞ ð5Þ 

Hered(n)desiredreceivedsignaldco(n)isinterferingsignalandg(n) is   

noise   component   assumed   to   be   Gaussian   with  variance 

 

 

 

 

 

 

 
 

Fig. 1.Model of digital transmission system. 

their synapse. Neurons perform a weighted sum on all of their in- 

puts and then the result goes through a transfer function to pro- 

duce an output. ANNs are organized into layers. There is an input 

layer, an output layer and sometimes one or more hidden layers. 

The hidden layers are the root of the ANN that performs the actual 

computations of the network. 

A network is comes into force when it is given with a set of in- 

puts and the output layer produces the desired result. Weights of 

neurons may be different. Similarly, transfer function of different 

neurons may be different (usually they are the same). Training of 

ANN is required to facilitate the proper arrangement of a network. 

 
 Training neuralnetworks 

OutofseveralmethodsoftrainingtheANN,back-propagationis the 

most common one. An ANN is trained by a set of data that con- 

sistsofinputsandadesiredoutput.Thetrainingstepsare: 
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1. Readintheinputsandexpectedoutputs 
2. Compute the result by weighted sum of inputs and passing 

through the transferfunctions 

3. Compare the result with desiredresult 

4. Computeandupdatefitnessvaluebasedoncomparison. 

5. Repeat steps 2 and 3 until all training pointsare finished 

6. Adjustweightsintheappropriatedirectiontooptimizefitness. 

7. Repeat 1–6 until acceptable fitness value isfound 
 

The Back-propagation method Rumelhart, Geoffey, 

&Ronald,1986 is a gradient type adjustment for weight 

modification and may take an extremely long time to train a 

network. In this paper, 

wesuggesttheuseofPSOasatrainingalgorithm. 

 
 Transferfunctions 

Each of the neurons associated with a transfer function that 

operates on the input. The input of a neuron is the weighted sum  

ofitsinputs.Agoodtransferfunctionisthesigmoidfunction. 

The sigmoid function (9) maps the input to the range [0, 1], and 

given as: 

 

Here, q1and q2are two random constants corresponding to social 

and cognitive behavior of particle. For the problem given, apopula- 

tion of particles (around 20–50) are randomly initialized. Then they 

allowed moving in the problem space in search of an optimal or 

near optimal solution. The particles continue to move till they reach 

the desired position, i.e., global bestsolution. 

PSO seems to be a better method of training ANN as compared 

to the traditional methods. PSO does not just train one network, 

rather, trains a network of networks. PSO forms  a  number  of  

ANN and initializes all weights to arbitrary random values and 

trains each one. PSO compares fitness each network’s. The network 

with the best fitness is chosen to be the teacher  network(theglobal 

best). This network trains the others to update themselves 

forgetting their personal error orfitness. 

Each neuron contains a position and velocity. The position cor- 

responds to the weight of a neuron. The velocity is used to update 

and control the position (weight). If a particular neuron is far away 

from the global best position, then it will learn adjustment of its 

weight from a neuron which is closer to the global best. 

Here, the particles are the individual networks not the neurons. 

Sigmoidx 
 1 

 

1þe—a·x 

 
 Particle SwarmOptimization 

ð9Þ 
The number of neurons in the network defines the  dimensionof the 

hyperspace. Hence, location of the network in the problem 

hyperspace is effectively defined by the positions of each neuron  in 

anetwork. 

Theremaybeanumberofmaximaandminimaintheproblem 
hyperspace.Particlesswarmaroundinthehyperspace,updating 

PSO Kennedy &Eberhart, 1995, del Valle, Venayagamoorthy, 
Mohagheghi, Hernandez, & Harley, 2008 is a population based 

search algorithm and is inspired by natural habits of bird flocking 

and fish schooling. In this paper, PSO is used to train ANN to be 

used as a channel equalizer. 

PSO exploits the cooperation aspect and applies it to engineer-

ing optimization problems. The particles simply follow a prede- 

fined set of rules. PSO computes the particles based on a fitness 

function and finds a particle with a good solution. The particle with 

the best fitness is chosen as teacher. All other particles then learn 

from this best particle. No two particles are same and still each 

learns the attributes of other that will help to improve their fitness. 

 
 PSOmodel 

 
AParticleSwarmisapopulationofindividuals,where,eachone 

influences the neighbors, have contribution in some features  forthe 

problem. Any single particle can be a possible solution, defined by 

its position, of the problem. Particles move though the problem 

space and adjust their path based on influences from other 

particles. 

Each particle is randomly initialized to a certain position in the 
problem space. The number of dimensions in the problem space is 

equaltothenumberofcomponentstherearetooptimize.If,~xiand 
~v irepresentpositionandvelocityvector,aparticleupdatesitspo- 
sition according to the Euler integration equation for physical 

movement given as: 

~xiðtÞ ¼~xiðt—1Þ þ~v iðtÞ ð10Þ 

 
Velocity of the particle is computed from its current velocity 

(randomly initialized) and the velocity of the best particle in its 

neighborhood, including two stochastic variables. One of the two 

stochastic variables takes care of the portion of the velocity vector 

corresponding to it’s previous velocity, while the other one takes 

care of the portion corresponding to the velocity of the best parti- 

cle. The resultant, generally, is a constant Kennedy &Eberhart,1995. 

Updation rule of the velocity vector is: 

~vðtÞ ¼~v ðt—1Þ þq½~p—~xðt—1Þ]þq½~p—~xðt—1Þ] ð11Þ 

their position as seen from best position found by their neighbor 

particles. Finally, a particle will reach the optimal position. When 

they reach that point, it will continue to move towards the global 

optima. Other particles will quickly learn this and adjust their posi- 

tions accordingly towards this optima. This ensures that a team of 

particles covered the optima area. Training of the network stops, if 

this optimum fitness is acceptable, 

Failing to reach the global optimal positions, the position of the 

neurons are once again randomized and the swarm restarts. There 

are number of solutions for a real-number ANN. In PSO, it is as- 

sured that the network will never converge to false maxima. For 

solution hunting, PSO takes on two major methods, namely, explo- 

ration and exploitation. Exploration is the generalized search for 

maxima and minima. This occurs with a larger population moving 

over the entire problem space. 

Exploitation is the convergence on a particular maxima or min- 

ima. Then, exploration starts to examine it for a second time. Up- 

date during exploitation is with lesser speed than in exploration. 

This is done by a smaller step size and also taken care that there 

won’t be overstep to a possible optima. This  part is  an  addition  to 

original PSO and monitored by an annealing factor. As used in this 

paper, this annealing factor starts with 1 and decreases 

whilemovingtowardsoptimalposition,i.e.takingsmallersteps. 

 
 Constructing a networkswarm 

ThisresearchfocusesaroundtrainingANNwithPSO.Todothis, a 

population of networks must be constructed. Here, each ANN, as 

per the weights of the network ingredients, is treated as a particle 

in problem space. Usually, a 20-networks population works well. 

PSO neighborhoods is formed by this population and initialized. 

This construction is called the topology of the swarm system. 
 Training the swarm of neuralnetworks 

The training process is as follows: 

 

● Examine over the training data and record the sum of thenet- 
 work errors, for each network. 
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To get the best network in the problem space, compare all of the 

errors. 

If any network has reached the minimum error desired, record 

its weights and exit the program. 

Else, run PSO to update position and velocity vectors of each 

network. 

● Repeat from step1. 

If the required fitness achieved by a particle, indicating that a 

solution has obtained, then this particle changes from being a stu- 

dent searching solution to a teacher in production of ANN. 

Channel Equalization is a complex problem with a large number of 

control variables. ANN has proven to be excellent tools for the 

problem. The proposed solution is to construct and train ANN to 

predict   the channel state. 

The training data consisted of [±1].Anetworkwasconstructed 

which used these values as inputs to the network. Network 

fitness, given in (12) was determined to be the mean square of 

errors for the entire training set, where error is defined to be the 

recorded symbol minus the network predictedsymbol. 

Fitness¼ðRecordedValue—NetworkpredictedValueÞ2ð12Þ 

A network is is deemed usable once it has met some minimal 

requirements for performance. The requirement used was the sta- 

tistical calculation known as the multiple correlation coefficients 

and is given as: 

R2 1  Fitness  
 

   

13Þ 
¼—P

ðRecordedValue—MeanRecordedValueÞ 
ð
 

This measurement subtracts, from unity, the network fitness divided 

by the square of the mean subtracted by each output. As the network 

becomes more accurate, the resulting value approaches one. 

As mentioned earlier, a multi layer ANN is used for channel 

equalizer. PSO is used to train the parameters of the network. Each 

of the parameters, i.e., weight, topology, transfer function etc. were 

trained with PSO as mentioned earlier that PSO trains the network 

as a whole. While going for a pseudo-code, it is assumed that ANN 

first acts as an administrator to provide resources (i.e., which 

parameter is to be optimized) to PSO which acts as a teacher for 

student ANN learning the equalization problem. Pseudo-code for 

the problem is provided in Fig. 2. In the pseudo-code, N and M 

represent number of particles and number of hidden nodes respec- 

tively. There is a 5:1 ratio of ants to candidate network topologies. 

 
4. Simulations 

 

For the simulations, value of N is set at 25 and value of Minitial- 

ized with 5. The velocity factors are 0.8 for the inertial constant, 2 

for the cognitive constant, and 2 for the social constant. Number of 

iterations and allowable error are set at 1000 and 10—3,  

respectively. 

For Evaluation of the performance of the proposed equalizer, 

simulation examples are presented in this section. Two different 

comparisons are used in these examples. 

The widely used channel Liang &Zhi, 2004 is used for simulations. 

The system transfer function of this 3rd order channel model is: 

HðzÞ ¼1—0:9z—1þ0:385z—2þ0:771z—3 ð14Þ 

This channel have system zeros at 0.6 and 0.75 ± j0.85. To illustrate 

the effect of nonlinearity on the equalizer performance, nonlinear 

channel models with the following nonlinearity are introduced. 

yðnÞ ¼tanh½xðnÞ] ð15Þ 

In the examples, the channel input signals are selected as i.i.d. 

sequenceshavingzeromean.Theadditivechannelnoiseismodeled 

 

 
Fig. 3.log10(BER) vs. SNR (in dB) performance for ANN based equalizers. 

 

as complex white Gaussian processes with zero-mean and indepen- 

dent to the channel input. It is noted that the symbol error rate (or, 

Bit Error Rate (BER)) is the final test for communication perfor- 

mance evaluation, and that the equalizer output noise variance is 

directly related to the symbol error rate via the complementary 

error function (The noise is assumed to have a Gaussian probability 

density function.). More specifically, the probability of BER is 

related to SNR at the equalizer output. 
 Comparisonwithotherneuralnetworkbasedequalizers 

For comparisons with other neural network based equalizers 

available in the literature, equalizers proposed in Zhao et al. 

 

● 

● 
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confirmed that the proposed equalizer converges better that other 

ANN based equalizers. 

 Comparison with Neuro-fuzzyequalize

(2011a, 2011b, 2011c), i.e., PFLADFRNN Zhao et al. (2011a),JPRNN 
Zhao et al. (2011b) and CFFLNNDFE Zhao et al. (2011c)were 

simulated along with proposed equalizer to evaluate BER under 

similar conditions discussed above and resulting plot is shown in 

Fig. 3. Simulation runs up to the point when we receive 100 symbol 

errors at the output of the equalizer. The BER has been evaluatedas 

100 divided by total symbols sent during the simulation. 

Convergence characteristics of ANN based equalizers are shown 

in Fig. 4. 

It is seen from Fig. 3 that the proposed equalizer outperforms 

equalizers proposed in literature, PFLADFRNN, JPRNN and 

CFFLNNDFE at all noise conditions. From Fig. 4, it is further 

 

For comparisons with Neuro-fuzzy equalizers availableinthe 

literature,type-

2TSKFNSasdiscussedinAbiyevetal.(2011)andNeuro-

fuzzyequalizertrainedwithGAofPanigrahietal.(2008a)simulated 

along with proposed equalizer to 

evaluateBERundersimilarconditionsdiscussedaboveandresulting

plotisshown 

inFig.5.Simulationrunsuptothepointwhenwereceive100symboler

rorsattheoutputoftheequalizer.TheBERhasbeenevaluated100divi

dedbytotalsymbolssentduringthesimulation.Conver-

gencecharacteristicsofANNbasedequalizersareshowninFig.6.It is 

seen from Fig. 5 that the proposedequalizer 

outperformsbothtype-

2TSKFNSandGAtrainedNFNatallnoiseconditions.FromFig.6,itisf

urtherconfirmedthattheproposedequalizercon- 

verges better that other Neuro-fuzzy equalizers. 

 
5. Conclusion 

This paper proposed an ANN based equalizer trained with PSO. 

AscomparedtootherANNbasedequalizersaswellasNeuro-fuzzy 

equalizers the proposed equalizer performs better in all noise 

conditions. 

Contributions of the paper can be outlined as: 
Development of a learning method for optimization of network 

topology of ANN 

Use of PSO trained ANN in channel equalization 
This article paves a way for future works utilizing other nature 

inspired algorithms for training of ANN based equalizes. 

This article paves a way for future works utilizing grammatical 

swam, that also can be used fo optimization of ANN topology, 

for training of ANN based equalizes. 

This article also paves a way for future works utilizing PSO and 

other nature inspired algorithms for training of ANN for other 

practical applications those can be formulated either as an opti- 

mization or as a classification problem. 
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